Search results for "Coated vesicle"

showing 10 items of 26 documents

In vivo Trafficking and Localization of p24 Proteins in Plant Cells

2008

p24 proteins constitute a family of putative cargo receptors that traffic in the early secretory pathway. p24 proteins can be divided into four subfamilies (p23, p24, p25 and p26) by sequence homology. In contrast to mammals and yeast, most plant p24 proteins contain in their cytosolic C-terminus both a dilysine motif in the -3, -4 position and a diaromatic motif in the -7, -8 position. We have previously shown that the cytosolic tail of Arabidopsis p24 proteins has the ability to interact with ARF1 and coatomer (through the dilysine motif) and with COPII subunits (through the diaromatic motif). Here, we establish the localization and trafficking properties of an Arabidopsis thaliana p24 pr…

Recombinant Fusion ProteinsMolecular Sequence DataArabidopsisGolgi ApparatusVacuoleProtein Sorting SignalsBiologyEndoplasmic ReticulumBiochemistrysymbols.namesakeStructural BiologyArabidopsisGeneticsAnimalsHumansProtein IsoformsAmino Acid SequenceMolecular BiologyCOPIISecretory pathwayArabidopsis ProteinsLysineEndoplasmic reticulumMembrane ProteinsCell BiologyCOPIGolgi apparatusbiology.organism_classificationActinsCell biologyDNA-Binding ProteinsProtein TransportBiochemistryCoatomerVacuolessymbolsCOP-Coated VesiclesCarrier ProteinsTranscription FactorsTraffic
researchProduct

Synaptic vesicle alterations in rod photoreceptors of synaptophysin-deficient mice.

2001

Abstract The abundance of the integral membrane protein synaptophysin in synaptic vesicles and its multiple possible functional contributions to transmitter exocytosis and synaptic vesicle formation stand in sharp contrast to the observed lack of defects in synaptophysin knockout mice. Assuming that deficiencies are compensated by the often coexpressed synaptophysin isoform synaptoporin, we now show that retinal rod photoreceptors, which do not synthesize synaptoporin either in wild-type or in knockout mice, are affected by the loss of synaptophysin. Multiple pale-appearing photoreceptors, as seen by electron microscopy, possess reduced cytoplasmic electron density, swollen mitochondria, an…

MalePresynaptic TerminalsSynaptophysinAction PotentialsFluorescent Antibody TechniqueDark AdaptationBiologyRibbon synapseSynaptic vesicleSynaptic TransmissionExocytosisExocytosisMiceRetinal Rod Photoreceptor CellsElectroretinographySynaptic vesicle recyclingAnimalsMice KnockoutSex CharacteristicsGeneral NeuroscienceVesicleMembrane ProteinsClathrin-Coated VesiclesSynaptoporinCell biologyMice Inbred C57BLMicroscopy ElectronProtein TransportKnockout mouseSynaptophysinbiology.proteinFemaleSynaptic VesiclesNeurosciencePhotic StimulationNeuroscience
researchProduct

Clustering induces a lateral redistribution of α2β1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization

2004

Integrin alpha 2 beta 1 mediates the binding of several epithelial and mesenchymal cell types to collagen. The composition of the surrounding plasma membrane, especially caveolin-1- and cholesterol-containing membrane structures called caveolae, may be important to integrin signaling. On cell surface alpha 2 beta 1 integrin was located in the raft like membrane domain, rich in GPI-anchored proteins, rather than in caveolae. However, when antibodies were used to generate clusters of alpha 2 beta 1 integrin, they started to move laterally on cell surface along actin filaments. During the lateral movement small clusters fused together. Finally alpha 2 beta 1 integrin was found inside caveolae …

Protein Kinase C-alphaEndosomeintegrinkinasemedia_common.quotation_subjectCaveolin 1IntegrinCoated VesiclesEndosomesCaveolaeCaveolinsCell Membrane StructuresCD49cCollagen receptorCell membraneCaveolaemedicineHumansantibodiesMicroscopy ImmunoelectronInternalizationMolecular BiologyCells CulturedProtein Kinase Cmedia_commonbiologyCell MembraneArticlesCell BiologyIntegrin alphaVproteinsEnterovirus B HumanCell biologyActin Cytoskeletonmedicine.anatomical_structureIntegrin alphaVcaveolaebiology.proteinIntegrin alpha2beta1
researchProduct

8-N(3)-3'-biotinyl-ATP, a novel monofunctional reagent: differences in the F(1)- and V(1)-ATPases by means of the ATP analogue.

2001

A novel photoaffinity label, 8-N(3)-3'-biotinyl-ATP, has been synthesized. The introduction of an additional biotin residue is advantageous for easy detection of labeled proteins. This could be first tested by reaction with the F(1)-ATPase from the thermophilic bacterium PS3 (TF(1)). UV irradiation of TF(1) in the presence of 8-N(3)-3'-biotinyl-ATP results in a nucleotide-dependent binding of the analogue in the noncatalytic alpha and the catalytic beta subunits of TF(1), demonstrating the suitability of this analogue as a potential photoaffinity label. Reaction with the V(1)-ATPase, however, led to labeling of subunit E, which has been suggested as a structural and functional homologue of …

Models MolecularVacuolar Proton-Translocating ATPasesTime FactorsUltraviolet RaysProtein subunitATPaseBiophysicsCoated vesicleBiotinPhotoaffinity LabelsPhotoaffinity LabelsBiochemistryCatalysischemistry.chemical_compoundAdenosine TriphosphateBiotinBacterial ProteinsManducaAnimalsBinding siteMolecular BiologyBinding SitesPhotoaffinity labelingbiologyChemistryCell BiologyProton-Translocating ATPasesBiochemistryModels ChemicalSpectrophotometrySpectrometry Mass Matrix-Assisted Laser Desorption-Ionizationbiology.proteinCattleGamma subunitProtein BindingBiochemical and biophysical research communications
researchProduct

Sorting signals in the cytosolic tail of plant p24 proteins involved in the interaction with the COPII coat.

2004

The ability of the cytosolic tail of a plant p24 protein to bind COPI and COPII subunits from plant and animal sources in vitro has been examined. We have found that a dihydrophobic motif in the -7,-8 position (relative to the cytosolic carboxy-terminus), which strongly cooperates with a dilysine motif in the -3,-4 position for COPI binding, is required for COPII binding. In addition, we show that COPI and COPII coat proteins from plant cytosol compete for binding to the sorting motifs in these tails. Only in the absence of the dilysine motif in the -3,-4 position or after COPI depletion could we observe COPII binding to the p24 tail. This competition is not observed when using rat liver cy…

CoatPhysiologyAmino Acid MotifsArabidopsisReceptors Cytoplasmic and NuclearPlant ScienceBiologyCoat Protein Complex ICytosolAnimalsCOPIIBinding SitesVesicular-tubular clusterArabidopsis ProteinsCell BiologyGeneral MedicineCOPIPlant cellIn vitroPeptide FragmentsCell biologyRatsCytosolProtein TransportRat liverCOP-Coated VesiclesProtein BindingSignal TransductionPlantcell physiology
researchProduct

Characterization of Cop I Coat Proteins in Plant Cells

2000

Membrane traffic in eukaryotic cells is mediated by COP (coat protein)-coated vesicles. Their existence in plant cells has not yet been unequivocally demonstrated, although coated vesicles (probably with a COP coat) can be seen by electron microscopy. At the gene level, plant cells seem to contain all the components necessary to form COP-coated vesicles. In this paper, we have used antibodies raised against mammalian COPI coat proteins to detect putative homologues in rice (Oryza sativa) cells. Using these antibodies, we have found that rice cells contain alpha-, beta-, beta'-, and gamma-COP, as well as ADP-ribosylation factor (ARF) 1 protein. In addition, we show that antibodies against ma…

ImmunoprecipitationBlotting WesternBiophysicsCoated vesicleCross ReactionsBiologyCoatomer ProteinBiochemistryAntibodiesCytosolMicrosomesAnimalsMolecular BiologyVesiclefood and beveragesBiological TransportNeomycinOryzaCell BiologyCOPIPlant cellPrecipitin TestshumanitiesRatsCell biologyMolecular WeightCytosolLiverBiochemistryCoatomerbiology.proteinADP-Ribosylation Factor 1Guanosine TriphosphateAntibodyProtein BindingBiochemical and Biophysical Research Communications
researchProduct

Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate.

2007

Phosphatidylinositol 4,5-bisphosphate [PI(4,5) P 2 ], a phosphoinositide concentrated predominantly in the plasma membrane, binds endocytic clathrin adaptors, many of their accessory factors, and a variety of actin-regulatory proteins. Here we have used fluorescent fusion proteins and total internal reflection fluorescence microscopy to investigate the effect of acute PI(4,5) P 2 breakdown on the dynamics of endocytic clathrin-coated pit components and of the actin regulatory complex, Arp2/3. PI(4,5) P 2 breakdown was achieved by the inducible recruitment to the plasma membrane of an inositol 5-phosphatase module through the rapamycin/FRB/FKBP system or by treatment with ionomycin. PI(4,5)…

DynaminsPhosphatidylinositol 45-DiphosphateEpsinEndocytic cyclemacromolecular substancesEndocytosisClathrinClathrin coatModels Biologicalchemistry.chemical_compoundChlorocebus aethiopsAnimalsHumansDynaminSirolimusMultidisciplinarybiologyCell MembraneClathrin-Coated VesiclesBiological SciencesActinsEndocytosisCell biologyAdaptor Proteins Vesicular TransportPhosphatidylinositol 45-bisphosphatechemistryActin-Related Protein 3Actin-Related Protein 2COS Cellsbiology.proteinLamellipodiumProceedings of the National Academy of Sciences of the United States of America
researchProduct

Endoplasmic Reticulum stress reduces COPII vesicle formation and modifies Sec23a cycling at ERESs

2013

AbstractExit from the Endoplasmic Reticulum (ER) of newly synthesized proteins is mediated by COPII vesicles that bud from the ER at the ER Exit Sites (ERESs). Disruption of ER homeostasis causes accumulation of unfolded and misfolded proteins in the ER. This condition is referred to as ER stress. Previously, we demonstrated that ER stress rapidly impairs the formation of COPII vesicles. Here, we show that membrane association of COPII components, and in particular of Sec23a, is impaired by ER stress-inducing agents suggesting the existence of a dynamic interplay between protein folding and COPII assembly at the ER.

Vesicular Transport ProteinsBiophysicsEndoplasmic ReticulumBiochemistryCell LineVesicular Transport ProteinGeneticStructural BiologyERESGeneticsVesicular Transport ProteinsHumansCOPIIEndoplasmic Reticulum StreMolecular BiologyCOPIIChemistryVesicleEndoplasmic reticulumSec23Cell BiologyCOP-Coated VesiclesSEC23AEndoplasmic Reticulum StressCell biologyBiophysicUnfolded protein responseER streProtein foldingCOP-Coated VesiclesER stressCOP-Coated VesicleHumanProtein BindingFEBS Letters
researchProduct

In vitrouptake of lysozyme-loaded liposomes coated with chitosan biopolymer as model immunoadjuvants

2009

Chitosan binds to negatively charged soy lecithin liposomes by an electrostatic interaction driven by its cationic amino group. This interaction allows developing stable coated vesicles suitable as a targeted carrier and controlled release system for drugs and vaccines. In this work, we studied the effect of chitosan-coated liposomes on the uptake and antigen presentation of hen egg-white lysozyme (HEL) in Peyer's patches peritoneal macrophages isolated from mice. Chitosan-coated liposomes were characterized according to size, zeta potential, and antigen-loading and release properties. Results showed an increase in the positive net charge and size of the liposomes as the concentration of ch…

Materials sciencePolymersCoated vesiclePharmaceutical Scienceengineering.materialChitosanchemistry.chemical_compoundMicePeyer's PatchesBiopolymersDrug Delivery SystemsAdjuvants ImmunologicCationsZeta potentialFluorescence microscopeAnimalsLiposomeChitosanChromatographyMicroscopy Confocaltechnology industry and agricultureControlled releasechemistryMicroscopy FluorescenceLiposomesengineeringInterleukin-2FemaleMuramidaseBiopolymerLysozymeJournal of Liposome Research
researchProduct

Evidence for a selective and electroneutral K+/H+-exchange in Saccharomyces cerevisiae using plasma membrane vesicles

1996

The existence of a K+/H+ transport system in plasma membrane vesicles from Saccharomyces cerevisiae is demonstrated using fluorimetric monitoring of proton fluxes across vesicles (ACMA fluorescence quenching). Plasma membrane vesicles used for this study were obtained by a purification/reconstitution protocol based on differential and discontinuous sucrose gradient centrifugations followed by an octylglucoside dilution/gel filtration procedure. This method produces a high percentage of tightly-sealed inside-out plasma membrane vesicles. In these vesicles, the K+/H+ transport system, which is able to catalyse both K+ influx and efflux, is mainly driven by the K+ transmembrane gradient and ca…

Cell Membrane Permeability[SDV]Life Sciences [q-bio]Coated VesiclesCoated vesicleBiological Transport ActiveBioengineeringSaccharomyces cerevisiaeBiologyH(+)-K(+)-Exchanging ATPaseApplied Microbiology and BiotechnologyBiochemistryMembrane PotentialsCell membraneElectron Transport Complex IVH(+)-K(+)-Exchanging ATPasealpha-MannosidaseMannosidasesGeneticsmedicineCentrifugation Density GradientNa+/K+-ATPaseComputingMilieux_MISCELLANEOUSMembrane potentialVesicleCell MembraneDithiazanineElectron Transport Complex IVIsoxazolesHydrogen-Ion ConcentrationMembranemedicine.anatomical_structureSpectrometry Fluorescence[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyBiochemistryBiophysicsChromatography GelPotassiumProtonsMannoseBiotechnology
researchProduct